Exponential function: $f(x) = 2^x$ Logarithmic function: $g(x) = \log_2 x$

These two functions are **inverse functions**. Let's look at the characteristics of inverse functions to see how these functions fulfill some requirements to be **inverse functions**.

• All the (*x*, *y*) ordered pairs of one function work as (*y*, *x*) ordered pairs in the other function.

$f(x) = 2^x$

x	1	2	3	4	5
y [or $f(x)$]	2	4	8	16	32

$$g(x) = \log_2 x$$

x	2	4	8	16	32
y [or $f(x)$]	1	2	3	4	5

Let's use algebra to prove this happens for all (x, y) combinations when we invert them to (y, x):

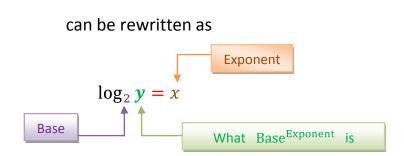
$$g(x) = \log_2 x$$
$$y = \log_2 x$$

Invert *x* and *y*.

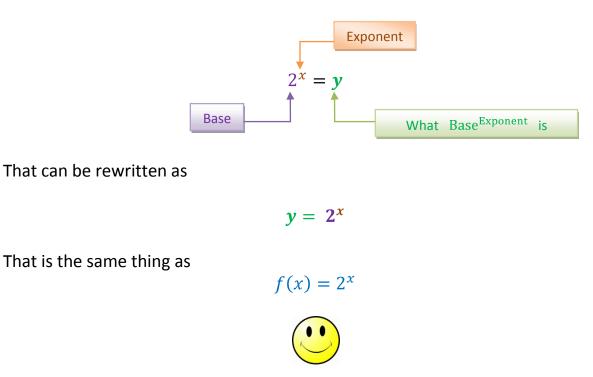
Solve for *y*.

 $x = \log_2 y$

 $x = \log_2 y$

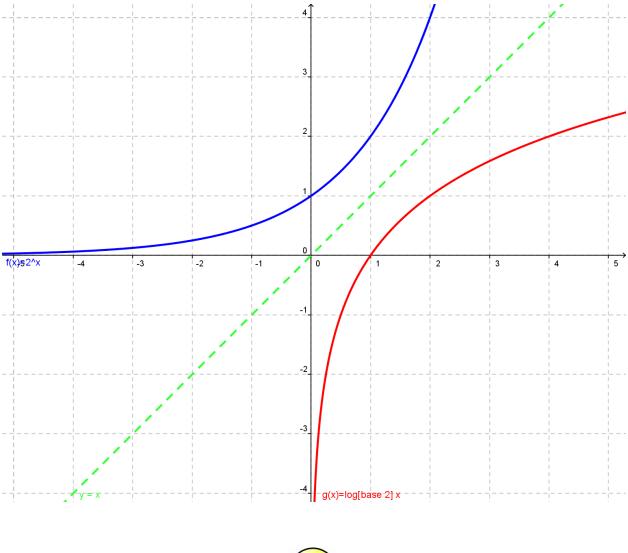


We learned on the first day of studying logarithms that this can be rearranged as



BowerPower.net

• The graphs of the two functions should be symmetrical to the line x = y.



ALGEBRA II How Exponential Functions & Logarithmic Functions Are Inverses

Example 1 – Simplify $11^{\log_{11} x}$

This may look bad, but we can do this in our heads once we realize what's happening!

- 1) We know that the exponential function $f(x) = 11^x$ and the logarithmic function $g(x) = \log_{11} x$ are inverse functions.
- 2) It looks like g(x) is the input for the f(x) function.

$$f(x) = 11^{x}$$
$$f(g(x)) = 11^{\log_{11} x}$$

Page 4

3) We know that when f(x) and g(x) are inverse functions, then

$$f(g(x)) = x$$
 and $g(f(x)) = x$

4) The answer must just be x !

x

Example 2 – Simplify $\log_{12} 12^x$

This may look as bad as Example 1, but it is just as easy!

- 1) We know that the exponential function $f(x) = 12^x$ and the logarithmic function $g(x) = \log_{12} x$ are inverse functions.
- 2) It looks like f(x) is the input for the g(x) function.

$$g(x) = \log_{12} x$$
$$g(f(x)) = \log_{12} 12^{x}$$

3) We know that when f(x) and g(x) are inverse functions, then

$$f(g(x)) = x$$
 and $g(f(x)) = x$

4) The answer must just be x !